资源类型

期刊论文 618

会议视频 8

年份

2023 48

2022 52

2021 54

2020 34

2019 32

2018 34

2017 33

2016 46

2015 26

2014 18

2013 18

2012 28

2011 28

2010 27

2009 31

2008 27

2007 23

2006 17

2005 8

2004 10

展开 ︾

关键词

斜拉桥 8

力学性能 3

碳中和 3

COVID-19 2

DX桩 2

一阶分析法 2

主缆 2

单边直线感应电机 2

南京长江第四大桥 2

固体氧化物燃料电池 2

圆柱 2

大规格 2

悬索桥 2

汶川地震 2

玻璃 2

玻璃钢 2

苏通大桥斜拉桥 2

(GaxIn1−x)2O3薄膜;带隙可调谐;磁控溅射 1

10kV高压电力电缆 1

展开 ︾

检索范围:

排序: 展示方式:

Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale

Gang SHI, Yongjiu SHI, Yuanqing WANG, Yongzhi ZUO, Xiaohao SHI, Zaoyang GUO,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 383-395 doi: 10.1007/s11709-010-0074-6

摘要: The single-layer cable net supported glass curtain wall has been applied in many building structures all over the world. In service, it will inevitably be subject to various damages. To study the influence of such damages on the static behavior of the single-layer cable net supported glass curtain wall, a full-scale model with the outside outline size of 4.85 m × 4.85 m and 4 × 4 grids is designed and tested. Two kinds of damages that are the cable prestress loss and cable anchorage end failure are led into the structure model during the test, and their influence has been investigated. The stiffness contribution of glass panels to the single-layer cable net supported glass curtain wall structure with or without damages and its change have been tested and analyzed. The results show that the maximum change rate of nodal deflection is 13.78% for the damage of cable prestress loss, while the change rate of nodal deflection is between 7% and 22% for the damage of cable anchorage end failure. The influence degree of the damages depends on the ratio of the structure initial stress stiffness change caused by damages to the total stiffness of the structure. The stiffness contribution of glass panels increases with the load increase. Under the same loading condition, the stiffness contribution of glass panels to the damaged structure is greater than that to the intact structure. The stiffness contribution of glass panels reduces the effect of the damages on the structural displacement and the cable tension force, but the glass panel could break if its stiffness contribution is too large.

关键词: single-layer plane cable net supported glass curtain wall     damage     cable prestress loss     cable anchorage end failure     stiffness contribution of glass panels    

Hierarchical fractal structure of perfect single-layer graphene

T. Zhang, K. Ding

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 371-382 doi: 10.1007/s11465-013-0279-1

摘要:

The atomic lattice structure of perfect single-layer graphene that can actually be regarded as a kind of hierarchical fractal structure from the perspective of fractal geometry was studied for the first time. Three novel and special discoveries on hierarchical fractal structure and sets were unveiled upon examination of the regular crystal lattices of the single-layer graphene. The interior fractal-type structure was discovered to be the fifth space-filling curve from physical realm. Two efficient methods for calculating the fractal dimension of this fresh member was also provided. The outer boundary curve had a fractal dimension equal to one, and a multi-fractal structure from a naturally existing material was found for the first time. A series of strict self-similar hexagons comprised a rotating fractal set. These hexagons slewed at a constant counterclockwise angle of 19.1° when observed from one level to the next higher level. From the perspective of fractal geometry, these pioneering discoveries added three new members to the existing regular fractal structures and sets. A fundamental example of a multi-fractal structure was also presented.

关键词: hierarchical fractal structure     fractal dimension     the fifth space-filling curve     multi-fractal structure    

Molecular dynamics investigation of mechanical properties of single-layer phagraphene

Ali Hossein Nezhad SHIRAZI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 495-503 doi: 10.1007/s11709-018-0492-4

摘要: Phagraphene is a very attractive two-dimensional (2D) full carbon allotrope with very interesting mechanical, electronic, optical, and thermal properties. The objective of this study is to investigate the mechanical properties of this new graphene like 2D material. In this work, mechanical properties of phagraphene have been studied not only in the defect-free form, but also with the critical defect of line cracks, using the classical molecular dynamics simulations. Our study shows that the pristine phagraphene in zigzag direction experience a ductile behavior under uniaxial tensile loading and the nanosheet in this direction are less sensitive to temperature changes as compared to the armchair direction. We studied different crack lengths to explore the influence of defects on the mechanical properties of phagraphene. We also investigated the temperature effect on the mechanical properties of pristine and defective phagraphene. Our classical atomistic simulation results confirm that larger cracks can reduce the strength of the phagraphene. Moreover, it was shown the temperature has a considerable weakening effect on the tensile strength of phagraphene. The results of this study may be useful for the design of nano-devices using the phagraphene.

关键词: phaqraphene     mechanical properties     crack propaqation     molecular dynamics     thermal effects    

Numerical studies of dynamic behavior of liquid film on single-layer wire mesh with different wettabilities

《化学科学与工程前沿(英文)》   页码 1672-1680 doi: 10.1007/s11705-022-2205-8

摘要: Droplet impacting on the stainless steel wire mesh is very common in chemical devices, like a rotating packed bed. Surface wettability of wire mesh significantly affects the liquid flow pattern and liquid dispersion performance. However, the effect of surface wettability on the impaction phenomena at microscale such as liquid film is still unknown. In this work, the dynamic behavior of liquid film on the surface of wire mesh was analyzed by computational fluid dynamics simulation. The dynamic behavior of liquid film on the surface of wire mesh can be divided into the following three steps: (1) spreading step; (2) shrinkage process; (3) stabilizing or disappearing step. Effects of surface wettability, as well as operating conditions, on wetting area and liquid film thickness were studied. Compared to the hydrophilic wire mesh, the final wetting area of hydrophobic wire mesh is zero in most cases. The average liquid film thickness on the surface of hydrophilic wire mesh is 30.02–77.29 μm, and that of hydrophobic wire mesh is 41.76–237.37 μm. This work provided a basic understanding of liquid film flow at microscale on the surface with various surface wettabilities, which can be guiding the packing optimization and design.

关键词: stainless steel wire mesh     computational fluid dynamics     surface wettability     liquid film     impacting    

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 513-528 doi: 10.1007/s11708-019-0638-7

摘要: It is difficult to accurately measure the temperature of the falling particle receiver since thermocouples may directly be exposed to the solar flux. This study analyzes the thermal performance of a packed bed receiver using large metal spheres to minimize the measurement error of particle temperature with the sphere temperature reaching more than 700°C in experiments in a solar furnace and a solar simulator. The numerical models of a single sphere and multiple spheres are verified by the experiments. The multiple spheres model includes calculations of the external incidence, view factors, and heat transfer. The effects of parameters on the temperature variations of the spheres, the transient thermal efficiency, and the temperature uniformity are investigated, such as the ambient temperature, particle thermal conductivity, energy flux, sphere diameter, and sphere emissivity. When the convection is not considered, the results show that the sphere emissivity has a significant influence on the transient thermal efficiency and that the temperature uniformity is strongly affected by the energy flux, sphere diameter, and sphere emissivity. As the emissivity increases from 0.5 to 0.9, the transient thermal efficiency and the average temperature variance increase from 53.5% to 75.7% and from 14.3% to 27.1% at 3.9 min, respectively. The average temperature variance decreases from 29.7% to 9.3% at 2.2 min with the sphere diameter increasing from 28.57 mm to 50 mm. As the dimensionless energy flux increases from 0.8 to 1.2, the average temperature variance increases from 13.4% to 26.6% at 3.4 min.

关键词: packed bed     solar thermal power plants     high heat fluxes     radiative heat transfer    

Fabrication and mechanical properties of single-wall carbon nanotubes and hyperbranched diazonium salt

LI Xinyang, FAN Pengwei, TUO Xinlin, WANG Xiaogong

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 286-290 doi: 10.1007/s11705-008-0058-4

摘要: Acidized single-wall carbon nanotubes (SWNTs) were fabricated into multilayers with a hyperbranched azobenzene-containing polymeric diazonium salt (PDAS) using the layer-by-layer adsorption technique. The fabrication process, multilayer thickness variation, multilayer surface morphology and the interaction between SWNTs and PDAS were monitored by UV-Vis absorption spectroscopy, optical ellipsometry, Atomic Force Microscopy, Scanning Electron Microscopy and Raman spectroscopy. Moreover, the nanomechanical properties of the multilayer films were measured by nanoindentation. All results show that SWNTs and PDAS can be fabricated into multilayers based on the cooperation of electrostatic absorption and chemical cross-linkage between SWNTs and PDAS. Further, this cooperation endows the SWNT/PDAS multilayer films with outstanding nanomechanical properties. The hardness and modulus are about 2.0GPa and 10.0GPa, respectively. Finally, the SWNT/PDAS multilayer film can be peeled off to be a free-standing film.

关键词: PDAS     layer-by-layer     interaction     cooperation     single-wall    

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1128-1143 doi: 10.1007/s11709-021-0753-5

摘要: This paper provides insight into the seismic behavior of a full-scale precast reinforced concrete wall under in-plane cyclic loading combined with out-of-plane loading replicated by sand backfill to simulate the actual condition of basement walls. The tested wall exhibited flexural cracks, owing to the high aspect ratio and considerable out-of-plane movement due to lateral pressure from the backfill. The wall performed satisfactorily by exhibiting competent seismic parameters and deformation characteristics governed by its ductile response in the nonlinear phase during the test with smaller residual drift. Numerical analysis was conducted to validate experimental findings, which complied with each other. The numerical model was used to conduct parametric studies to study the effect of backfill density and aspect ratio on seismic response of the proposed precast wall system. The in-plane capacity of walls reduced, while deformation characteristics were unaffected by the increase in backfill density. An increase in aspect ratio leads to a reduction in in-plane capacity and an increase in drift. Curves between the ratio of in-plane yield capacity and design shear load of walls are proposed for the backfill density, which may be adopted to determine the in-plane yield capacity of the basement walls based on their design shear.

关键词: precast wall     basement wall     out-of-plane response     quasi-static test     sand backfill     seismic parameters    

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 376-382 doi: 10.1007/s11709-010-0086-2

摘要: Pre-tensioned high strength trusses using alloy steel bar are widely used as glass wall supporting systems because of the high degree of transparency. The breakage of glass panes in this type of system occurs occasionally, likely to be due to error in design and analysis in addition to other factors like glass impurity and stress concentration around opening in a spider system. Most design does not consider the flexibility of supports from finite stiffness of supporting steel or reinforced concrete beams. The resistance of lateral wind pressure of the system makes use of high tension force coupled with the large deflection effect, both of which are affected by many parameters not generally considered in conventional structures. In the design, one must therefore give a careful consideration on various effects, such as support settlement due to live loads and material creep, temperature change, pre-tension force, and wind pressure. It is not uncommon to see many similar glass wall systems fail in the wind load test chambers under a design wind speed. This paper presents a rigorous analysis and design of this type of structural systems used in a project in Hong Kong, China. The stability function with initial curvature is used in place of the cubic function, which is only accurate for linear analysis. The considerations and analysis techniques are believed to be of value to engineers involved in the design of the structural systems behaving nonlinearly.

关键词: tension system     glass wall     nonlinear analysis     pre-tensioning     second-order analysis    

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1227-1242 doi: 10.1007/s11709-019-0551-5

摘要: The cable system of cable-supported structures usually bears high tension forces, and clip joints may fail to resist cable sliding in cases of earthquake excitations or sudden cable breaks. A analytical method that considers the dynamic cable sliding effect is proposed in this paper. Cable sliding behaviors and the resultant dynamic responses are solved by combining the vector form intrinsic finite element framework with cable force redistribution calculations that consider joint frictions. The cable sliding effect and the frictional tension loss are solved with the original length method that uses cable length and the original length relations. Then, the balanced tension distributions are calculated after frictional sliding. The proposed analytical method is achieved within MATLAB and applied to simulate the dynamic response of a cable-supported plane truss under seismic excitation and sudden cable break. During seismic excitations, the cable sliding behavior in the cable-supported truss have an averaging effect on the oscillation magnitudes, but it also magnifies the internal force response in the upper truss structure. The slidable cable joints can greatly reduce the ability of a cable system to resist sudden cable breaks, while strong friction resistances at the cable-strut joints can help retain internal forces.

关键词: sliding cable     explicit solution framework     original length method     seismic response     cable rupture    

玻璃隔墙防火性能评估研究

张庆文,张和平,杨昀,姚斌,杨健鹏

《中国工程科学》 2005年 第7卷 第12期   页码 83-87

摘要:

玻璃隔墙在现代大型建筑中的大量使用给建筑防火设计、审查和验收带来了挑战;分析了传统防火设计规范中对于玻璃隔墙的规定,总结了其优点和不足之处,并引入性能化防火设计的方法,对玻璃隔墙的防火性能进行评估研究;给出了玻璃隔墙的防火性能指标和传热计算的方法,结合某会展中心的具体案例对玻璃隔墙防火性能评估方法进行了阐述。评估结果可为玻璃隔墙防火设计、审核和验收工作提供依据。

关键词: 玻璃隔墙     防火     性能化     评估    

Numerical investigation of the effectiveness of effusion cooling for plane multi-layer systems with different

Dieter BOHN, Robert KREWINKEL

《能源前沿(英文)》 2009年 第3卷 第4期   页码 406-413 doi: 10.1007/s11708-009-0041-x

摘要: Within Collaborative Research Center (SFB) 561 “Thermally Highly Loaded, Porous and Cooled Multi-Layer Systems for Combined Cycle Power Plants” at RWTH Aachen University, an effusion-cooled multi-layer plate configuration is investigated numerically by the application of a three-dimensional in-house fluid flow and heat transfer solver, CHTflow. CHTflow is a conjugate code, which yields information on the temperature distribution in the solid body. This enables a detailed discussion of the effects of a change in materials. The geometrical set-up and the fluid flow conditions derive from modern gas turbine combustion chambers and bladings. Within the SFB, two different multi-layer systems, one consisting of substrate made of CMSX-4 (a single-crystal super-alloy), an MCrAlY-bondoat and a ZrO thermal barrier coating (TBC), and the other consisting of a NiAl-alloy and a graded bondcoat/TBC, have been investigated. The grading will increase the life-span of the TBC as it can better compensate the different thermal expansion coefficients of different materials. The main focus in this study is on the different substrate materials, because the thermal conductivity of the NiAl is considerably higher than that of CMSX-4, which leads to different temperature profiles in the components. The numerical grid for the simulations contains the coolant supply (plenum), the solid body for the conjugate calculations, and the main flow area on the plate. The effusion-cooling is realized by finest drilled shaped holes with a diameter of 0.2mm. The investigation is concentrated on a cooling hole geometry with a laterally widened fan-shaped outlet, contoured throughout, and one without lateral widening that is only shaped in the TBC-region of the system. Two blowing ratios, =0.28 and =0.48, are investigated, both for a hot gas Mach number of 0.25. The results for the lower blowing ratio and the fully contoured hole are discussed as well as those of the higher blowing ratio and the non-laterally widened hole. These represent two characteristic cases.

关键词: conjugate calculation     effectiveness of effusion cooling     multi-layer systems     CMSX-4     NiAl-FG75    

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 631-644 doi: 10.1007/s11465-020-0599-x

摘要: The ever-increasing requirements for the scalable manufacturing of atomic-scale devices emphasize the significance of developing atomic-scale manufacturing technology. The mechanism of a single atomic layer removal in cutting is the key basic theoretical foundation for atomic-scale mechanical cutting. Material anisotropy is among the key decisive factors that could not be neglected in cutting at such a scale. In the present study, the crystallographic orientation effect on the cutting-based single atomic layer removal of monocrystalline copper is investigated by molecular dynamics simulation. When undeformed chip thickness is in the atomic scale, two kinds of single atomic layer removal mechanisms exist in cutting-based single atomic layer removal, namely, dislocation motion and extrusion, due to the differing atomic structures on different crystallographic planes. On close-packed crystallographic plane, the material removal is dominated by the shear stress-driven dislocation motion, whereas on non-close packed crystallographic planes, extrusion-dominated material removal dominates. To obtain an atomic, defect-free processed surface, the cutting needs to be conducted on the close-packed crystallographic planes of monocrystalline copper.

关键词: ACSM     single atomic layer removal mechanism     crystallographic orientation effect     mechanical cutting     Manufacturing III    

Application of cable-supported spatial grid in dry coal shed

XING Haidong, HAO Jiping, XU Guobin

《结构与土木工程前沿(英文)》 2008年 第2卷 第1期   页码 26-29 doi: 10.1007/s11709-008-0008-8

摘要: This paper presented a new structural style cable-supported spatial grid, which was applied in large span dry coal sheds. The influence of configuration of cable on the force of cable and beam, the ratio of beam force to cable force and the deflection of span was investigated, and a rational configuration of cable was obtained. The results show that the cable-supported spatial grid can maximize the use of material strength, and have the advantages of low usage of steel, large span and sufficient headroom.

关键词: dry     material strength     low     rational configuration     influence    

Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 699-708 doi: 10.1007/s11705-021-2093-3

摘要: Layer-by-layer assembly is a versatile technique for fabricating nanofiltration membranes, where multiple layers of polyelectrolytes are usually required to achieve reasonable separation performance. In this work, an ionic strength directed self-assembly procedure is described for the preparation of nanofiltration membranes consisting of only a single bilayer of poly(diallyldimethylammoniumchloride) and poly(sodium-4-styrenesulfoate). The influence of background ionic strength as well as membrane substrate properties on the formation of single-bilayer membranes are systematically evaluated. Such a simplified polyelectrolyte deposition procedure results in membranes having outstanding separation performance with permeating flux of 14.2 ± 1.5 L∙m–2∙h–1∙bar–1 and Na2SO4 rejection of 97.1% ± 0.8% under a low applied pressure of 1 bar. These results surpass the ones for conventional multilayered polyelectrolyte membranes. This work encompasses an investigation of ionic strength induced coiling of the polyelectrolyte chains and emphasizes the interplay between-polyelectrolyte chain configuration and substrate pore profile. It thus introduces a new concept on the control of membrane fabrication process toward high performance nanofiltration.

关键词: layer-by-layer self-assembly     single bilayer     nanofiltration membrane     desalination    

Recent advancements in optical microstructure fabrication through glass molding process

Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 46-65 doi: 10.1007/s11465-017-0425-2

摘要:

Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibration-assisted molding technology.

关键词: optical microstructure     microgroove     microlens     glass molding process     single-point diamond cutting    

标题 作者 时间 类型 操作

Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale

Gang SHI, Yongjiu SHI, Yuanqing WANG, Yongzhi ZUO, Xiaohao SHI, Zaoyang GUO,

期刊论文

Hierarchical fractal structure of perfect single-layer graphene

T. Zhang, K. Ding

期刊论文

Molecular dynamics investigation of mechanical properties of single-layer phagraphene

Ali Hossein Nezhad SHIRAZI

期刊论文

Numerical studies of dynamic behavior of liquid film on single-layer wire mesh with different wettabilities

期刊论文

Thermal performance of a single-layer packed metal pebble-bed exposed to high energy fluxes

Shengchun ZHANG, Zhifeng WANG, Hui BIAN, Pingrui HUANG

期刊论文

Fabrication and mechanical properties of single-wall carbon nanotubes and hyperbranched diazonium salt

LI Xinyang, FAN Pengwei, TUO Xinlin, WANG Xiaogong

期刊论文

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

期刊论文

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

期刊论文

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

期刊论文

玻璃隔墙防火性能评估研究

张庆文,张和平,杨昀,姚斌,杨健鹏

期刊论文

Numerical investigation of the effectiveness of effusion cooling for plane multi-layer systems with different

Dieter BOHN, Robert KREWINKEL

期刊论文

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

期刊论文

Application of cable-supported spatial grid in dry coal shed

XING Haidong, HAO Jiping, XU Guobin

期刊论文

Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration

期刊论文

Recent advancements in optical microstructure fabrication through glass molding process

Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG

期刊论文